FINAL: ALGEBRA II

Date: 29th April 2024

The Total points is **111** and the maximum you can score is **100** points. Notation: \mathbb{F}_p denotes the finite field of p elements where p is a prime number.

- (1) (8+8=16) Mark all correct options.
 - (a) Let $f(x) \in \mathbb{Q}(x)$ be an irreducible degree 4 polynomial. Which of the following can be a Galois group of f(x)?
 - (i) $\mathbb{Z}/4\mathbb{Z}$
 - (ii) $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
 - (iii) The alternating group A_4
 - (iv) The symmetric group S_4
 - (b) Which of the following statements are true?
 - (i) Every finite extension of $\mathbb{Q}(x)$ is separable.
 - (ii) Every finite extension of $\mathbb{F}_p(x)$ is separable. Here x is an indeterminate.
 - (iii) Every inseparable extension of $\mathbb{F}_p(x)$ is finite.
 - (iv) Every finite Galois extension of $\mathbb{F}_p(x)$ is separable. Here x is an indeterminate.
- (2) (15+15=30 points) Prove or disprove.
 - (a) The field $\mathbb{Q}(\sqrt[3]{5})$ is a subfield of some cyclotomic field over \mathbb{Q} .
 - (b) Every finite extension of a finite field is Galois.
- (3) (15+15=30 points) Let F be a field. Let $f(x) = f_1(x)f_2(x) \in F[x]$ be a factorization into irreducible factors and assume f(x) is separable. Let K be the splitting field of f. Let K_1 and K_2 , contained in K, be the splitting fields of f_1 and f_2 respectively. Let G_1 and G_2 be the Galois group of K_1/F and K_2/F respectively. Assume that $f_2(x)$ is irreducible in $K_1[x]$. Show by an example that the Galois group of K/F need not be $G_1 \times G_2$. Let $\alpha \in K$ be a root of $f_2(x)$. If $K_2 = F(\alpha)$, show that Galois group of K/F is $G_1 \times G_2$.
- (4) (10+10=20 points) Let a real number a be constructible by straight edge and compass. Show that the Galois group of the Galois closure of $\mathbb{Q}(a)/\mathbb{Q}$ is a solvable group. Let K/\mathbb{Q} be a Galois extension with Galois group A_5 . Let $a \in K \setminus \mathbb{Q}$ be a

real number, show that a is not constructible by straight edge and compass.

(5) (5+10=15 points) Let F be a field of characteristic p > 0. When is a finite field extension K/F called purely inseparable? Show that such a field extension is a normal extension.